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AI Scientific Evidence

AI

Artificial Intelligence (AI) is reshaping the way we interact, process information, and procure 
goods and services across vast industries. In healthcare, AI is already transforming the patient 
experience and how clinicians practice medicine in radiology and diagnostic imaging.

ALTIVITY

At Canon Medical, our aim is to evolve AI for everyone. Through Altivity, our bold new 
approach to AI innovation that is deeply rooted in machine learning and deep learning, 
we have developed smart technologies to make a whole new level of quality, insight and 
value possible across the entire care pathway. We are committed to supporting healthcare 
providers with the very best AI tools that improve clinical decision-making and streamline 
workflows, enabling more personalized medicine and improved patient outcomes. For this 
purpose, our global research teams collaborate with a range of leading academic, clinical and 
governmental institutions to develop and validate the next generation of AI-assisted imaging 
technologies. 

TRUST

An important requirement for the implementation of AI solutions into daily clinical practice 
is trust. At Canon Medical, we understand the importance of providing you with evidence-
based solutions. Therefore, we are pleased to provide you with this overview of the scientific 
evidence on Canon Medical AI solutions. This scientific reference list assists you in finding 
more in-depth information on our AI technologies. In addition, the highlighted articles 
provide you with quick insights into some of the demonstrated benefits of our AI applications 
in clinical radiology.

Cardiac experts from the University Hospital 
of Dijon have incorporated cardiac CT 
Angiography (CTA) for all patients with 
stroke symptoms as part of their initial stroke 
work-up. While adding important infor-
mation to better understand the patient’s 
underlying etiology, the additional acquisi-
tion results in increased radiation exposure. 
As such, strategies to reduce radiation dose 

without sacrificing image quality are needed. 

The potential of radiation dose reduction in 
cardiac CTA was investigated by Bernard et 
al. The authors compared Canon’s CT Deep 
Learning-based Reconstruction (DLR) to 
Hybrid Iterative Reconstruction (HIR) in terms 
of radiation dose and image quality. 300 
consecutive patients with suspected stroke 

underwent cardiac CTA reconstructed either 
with HIR or with DLR. For each CT reconstruc-
tion algorithm, image quality and radiation 
dose were evaluated. 

The use of the DLR algorithm for cardiac CTA 
in an acute stroke imaging protocol showed 
an approximate 51% improvement in Signal-
to-Noise Ratio (SNR), 49% improvement 
in contrast-to-noise ratio (CNR) and 40% 
reduction in radiation dose compared to 
HIR. See Table 1.

CT

Table 1: Radiation dose comparison between Hybrid Iterative Reconstruction (AIDR 3D) and Deep Learning Reconstruction (AiCE). 
Data are presented as mean ± standard deviation. Table adapted from reference (Bernard et al. 2021)

HIR DLR P value

Dose-length product (DLP) [mGy∙cm] 176.1±37.1 106.4±50.0 <0.001 

Volume CT dose index (CTDIvol) [mGy] 11.5±2.2 6.9±3.2 <0.001 

Effective dose [mSv] 2.5±0.5 1.5±0.7 <0.001 

Reference  
Bernard et al. | Deep learning reconstruction versus iterative 
reconstruction for cardiac CT angiography in a stroke imag-
ing protocol: reduced radiation dose and improved image 
quality. | Quant Imaging Med Surg. (2021) 
https://pubmed.ncbi.nlm.nih.gov/33392038/

Deep Learning Reconstruction algorithms can reduce radiation dose and 
improve image quality in CT angiography

CT image quality improvement and lower 
patient radiation dose are important in all 
patients but even more essential in pediatric 
patients. The solution to this challenge may 
arise from recent technological advances 
such as Deep Learning Reconstruction 
(DLR). Recently, Brady et al. compared 
current clinical CT reconstruction algo-
rithms to a DLR algorithm when pediatric 
patients were scanned based on the clinical 
indication for trauma. Image datasets were 
reconstructed using Model-Based Iterative 

Reconstruction (MBIR), Statistical-Based 
Iterative Reconstruction (SBIR), Filtered Back 
Projection (FPB), and DLR. The CT image 
quality of the different reconstruction 
algorithms was assessed subjectively by 
radiologists and objectively by mathemati-
cal observer models.  

Compared to MBIR, SBIR, and FPB, the 
DLR algorithm demonstrated higher 
object detection ability and accuracy. The 
subjective image quality investigation 

showed that the radiologists preferred DLR 
images over SBIR and MBIR images because 
of the improved object edge definition and 
quantum noise texture. Therefore, DLR had 
higher image quality ratings with greater 
radiologist preference and higher confi-
dence ratings.

The analysis of different image thicknesses 
showed that DLR images at 0.5 mm and 
3 mm showed equal or better detection 
accuracy than 3 mm SBIR images. This gives 
end-users multiple options such as using 0.5 
mm slices to reduce partial volume artifacts, 
while favorably reducing quantum noise.

DLR has a greater radiation dose reduction 
potential than alternative algorithms in 
pediatric CT examinations. Without sacrificing 
noise texture and spatial resolution, the use 
of DLR provides the potential for a 52% reduc-
tion in volume CT dose index. This translates 
to organ-specific reductions in the order of 
53% compared with SBIR. Shown in Figure 1.

CT

How does Deep Learning Reconstruction affect image quality and  
radiation dose reduction in pediatric patients? 

Reference  
Brady et al. | Improving Image Quality and Reducing 
Radiation Dose for Pediatric CT by Using Deep Learning 
Reconstruction | Radiology | (2021) 
https://pubmed.ncbi.nlm.nih.gov/33201790/

Figure 1. Organ-specific dose value comparison between DLR and SBIR. The use of DLR provides the potential for a 52% reduction in volume 
CT dose index and a mean of 53% in organ-specific reductions. Figure adapted from reference (Brady et al. 2021).
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Deep Learning Reconstruction (DLR) in 
CT is a promising application of artifi cial 
intelligence in radiology because it has the 
potential to improve image quality and 
radiological preference, as well as reduce 
patient radiation dose.

The review article of McLeavy et al. discusses 
the clinical advantages of DLR over conven-
tional image reconstruction techniques such 
as Hybrid Iterative Reconstruction (HIR). The 
authors are affi  liated with Leighton Hospital 
in Crewe which was one of the fi rst institu-
tions in the UK to use Advanced intelligent 
Clear-IQ Engine (AiCE) in a clinical setting. 
In this institution, DLR was used to develop 

specifi c protocols that achieve either ultra-
low dose scans without a penalty in image 
quality or ultra-high image quality without 
increasing radiation dose.

Examples shown in this article:
•  Volume CT pulmonary angiography 

with AiCE on pregnant women results in 
an eff ective dose of only 0.2 mSv. This is 
equivalent to 10 chest radiographs.

•  A dual-phase and pelvis CT performed 
on pediatric trauma patients results in 
only 0.8 mSv without a compromise in 
the signal and contrast-to-noise ratio. A 
case illustration from this institution is 

provided in Figure 1.
•  A CT scan of the urinary tract (kidney, 

ureter, and bladder (KUB)) using DLR 
with additional metal artifact reduction 
software reduced beam hardening in the 
pelvis. This exam resulted in an eff ective 
dose of only 1 mSv, an 84% dose reduc-
tion compared to HIR, without degrading 
image quality.

•  Whereas a plain radiograph of the abdo-
men and pelvis has an eff ective dose of 
1.4 mSv, the dose from CT scans of the 
entire urinary tract performed in this 
institution using DLR was only 1.2 mSv. 
This corresponds to 83% less radiation 
dose than the national dose levels. 

Other examples of dose reductions in 
COVID-19, coronary artery disease, bariatric 
and oncology patients were 
also demonstrated. 

In addition to ultra-low-dose protocols, DLR 
can be used to produce ultra-high-quality 
images, while still achieving dose reductions 
when compared to traditional reconstruc-
tion methods. In both cases, DLR off ers a 
high reconstruction speed.

In conclusion, DLR is the future in 
CT reconstruction as it provides the elusive 
triad of low dose, high quality, 
and high speed.

CT
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Figure 1. Dual-phase CT performed on a 7-year-old patient with suspected pancreatic trauma. Left: Coronal image from an arterial 
phase acquisition of the abdomen reconstructed with AiCE (0.3 mSv). Right: Coronal image from a portal venous phase acquisi-
tion of the abdomen and pelvis reconstructed with AiCE (0.5 mSv). 

CT

Deep Learning Reconstruction CT: low-dose, high-quality, and high-speed

Non-contrast Magnetic Resonance 
Coronary Angiography (MRCA) is a tech-
nique to assess coronary morphology with-
out a contrast agent or ionizing radiation. 
Despite the great potential of this tech-
nique for the diagnosis and management 
of coronary artery disease, it is not widely 
used. To make the use of non-contrast 
MRCA more common, a higher spatial res-
olution that does not prolong scan time is 
needed. Typically, an increase in resolution 
leads to a drop in SNR. Therefore, Yokota 
et al. chose in their study to increase the 
resolution but compensate the SNR drop 

MRI

AI enables high-resolution non-contrast MR Coronary Angiography

Reference
Yokota et al. | Effects of Deep Learning Reconstruction 
Technique in High-Resolution Non-contrast Magnetic 
Resonance Coronary Angiography at a 3-Tesla Machine | Can 
Assoc Radiol J (2021) 
https://pubmed.ncbi.nlm.nih.gov/32070116/

Figure 2. Example acquired on a 1.5T Vantage Orian of high-resolution non-contrast MRCA without (left) and with (right) Canon 
Medical’s DLR technology AiCE. The volume rendered images nicely demonstrate the improved visibility of the coronary arteries 
with AiCE.

High-resolution volume-rendered MRCA

Standard

Figure 1. The sharpness and traceability of the vessels were scored by 2 experts on a scale for 1 (poor) to 4 (excellent). Except for the left circumflex (LCX) all scores were significantly different between the 
standard and the high-resolution MRCA+DLR. Abbreviations: left coronary artery (LCA), left anterior descending (LAD), right coronary artery (RCA) 

by using Deep Learning Reconstruction 
(DLR) to reduce the noise.

Deep Learning Reconstruction for MR 
Coronary Angiography
The authors used the Advanced intelligent 
Clear-IQ Engine (AiCE) DLR technique from 
Canon Medical Systems to improve the 
image quality of high-resolution non-con-
trast MRCA. To evaluate the infl uence on 
image characteristics, the authors scanned 
ten healthy volunteers on Vantage Galan 
3T MR system (Canon Medical Systems) 
using standard MRCA and a high-resolution 

MRCA protocol. The diff erence in resolution 
between the standard and high-resolution 
protocol was a factor of three. The high-res-
olution images were evaluated both with 
and without DLR (AiCE). 

Signifi cant improvements in image 
characteristics 
The standard and high-resolution images 
were evaluated quantitatively by looking 
at the contrast-to-noise ratio (CNR) and 
qualitatively by a visual evaluation by two 
experienced observers. The CNR improved 
signifi cantly when DLR was applied to the 
high-resolution images. Figure 1 shows the 
results of the qualitative analysis, which 
demonstrates that the sharpness and trace-
ability of the vessels signifi cantly improved 
between standard MRCA and high-resolu-
tion MRCA plus DLR.

As a next step, the authors recommend 
evaluating this in a patient cohort to 
demonstrate the clinical value. Important 
in clinical translation is also applicability to 
all fi eld strengths. In Figure 2 we show that 
this technique is not just successful at 3T, 
but can be extended to 1.5T. These images 
show how DLR improves the visualization 
of coronary arteries in volume renderings of 
high-resolution non-contrast MRCA images.
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Figure 1. Example ADC map acquired at 1.5T (Vantage Orian) confirming the observations by Sagawa et al. The ADC value is the 
same with and without AiCE, but the standard deviation has improved for the map reconstructed with AiCE.

Reference
Sagawa et al. | Deep Learning-based Noise Reduction for 
Fast Volume Diffusion Tensor Imaging: Assessing the Noise 
Reduction Effect and Reliability of Diffusion Metrics | Magn 
Reson Med Sci (2020)
https://pubmed.ncbi.nlm.nih.gov/32963184/

MRI

In MR there is always a trade-off  between 
scan time, resolution and SNR. Deep 
Learning Reconstruction (DLR) is a 
technique that alleviates this trade-off  
by removing noise from the images 
to expand diagnostic capabilities for 
anatomical imaging. However, the value 
of DLR for more quantitative techniques 
like Diff usion-Weighted Imaging (DWI) 
and Diff usion Tensor Imaging (DTI) is less 
investigated. For these techniques it is 
important for the quantitative value not to 
change when DLR is applied. This means 
that the values of the Apparent Diff usion 
Coeffi  cient (ADC), Fractional Anisotropy 
(FA) or fi ber volume are the same with and 
without DLR. To research this, Sagawa et 
al. have investigated the infl uence of DLR 
on DWI and DTI in the brain. 

Fast DTI protocol combining MultiBand 
SPEEDER and DLR
The researchers included 20 patients with 
various brain diseases who were scanned 
on a Vantage Galan 3T (Canon Medical 
Systems) using a 32-channel head coil. The 
DTI scans were acquired with a b-value of 
1000 s/mm2 and 12 gradient directions. To 
prevent long scan times, the scans were 
accelerated with Canon Medical’s tech-
nique for simultaneous multi-slice acquisi-

Deep Learning Reconstruction improves the reliability of quantitative 
diff usion-weighted imaging

Figure 2. Fiber Volume of the pyramidal tracts. Both NAQ5 and 
NAQ1 + DLR are significantly better than NAQ1. There was no 
significant difference between NAQ5 and NAQ1+DLR. 

tion: MultiBand SPEEDER. Two scans were 
performed: one single acquisition in 1:05 
min (NAQ1) and a ground-truth scan with 
5 averages of 5:45 min (NAQ5). The single 
acquisition scan was reconstructed twice, 
one time using standard reconstruction 
and once using the Advanced intelligent 
Clear-IQ Engine (AiCE) DLR technique 
from Canon Medical Systems.

Improved reliability of quantitative 
values and better fi ber tracking 
with DLR 
There were no signifi cant diff erences in 
the signal intensity of the b-1000 diff usion 
images or the ADC values in any of the 
brain regions for the three datasets (NAQ1, 
NAQ5 and NAQ1 plus DLR). The same 
holds for the FA values, except in the 
deep gray matter. In the deep gray matter, 
the FA values were lowest for NAQ5 and 
highest for NAQ1. It is known that for 
areas with a low SNR, like the deep gray 
matter, the FA value tends to be overes-
timated. This overestimation was lower 
when DLR was applied, indicating that 
DLR improves the reliability of the scan. 
Also the decreased standard deviation 
and improved SNR in most brain regions 
demonstrates improved reliability with 
DLR (Figure 1). 

To evaluate the infl uence of DLR on 
Diff usion Tensor Tracking (DTT) of the 
pyramidal tracts, the Fiber Volume (FV) 
was determined. When the SNR is low, 
tracking points are terminated due to 
image noise, resulting in a low FV. Figure 
2 shows the Fiber Volumes of the three 
datasets. Both NAQ5 and NAQ1 plus DLR 
are signifi cantly better than NAQ1 (Figure 
2), demonstrating the feasibility of single 
averaging fast DTT with DLR for depict-
ing white matter fi bers for preoperative 
planning.

Sagawa et al. demonstrated in their study 
that DLR not only reduces noise, but also 
improves the reliability of ADC and FA 
values. In this study, the scan time of the 
scans with DLR was fi ve times lower than 
the ground truth, which can have a big 
impact on workfl ow and patient comfort. 

Images provided by Japanese 1.5T facility

Original

ADC value 0.78x10-3mm2/sec

Standard deviation 4.9x10-5

ADC value 0.78x10-3mm2/sec

Standard deviation 3.7x10-5
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Emergency department triage: Artifi cial Intelligence’s gateway 
to radiology

The earliest adoption of artifi cial intelli-
gence (AI) within clinical workfl ows has 
emerged within the emergency setting 
where it can manage priority for interpre-
tation of imaging studies. In this triage role, 
AI does not commit to a diagnosis; rather 
it off ers a binary decision as to whether 
the image contains a specifi c fi nding. The 
goal is to expedite the interpretation of the 
most critical cases, ultimately leading to 
improved patient outcomes. 

Stroke workfl ow, primed for 
optimization
One clinical domain particularly suited 
to workfl ow optimization, due to its time 
critical nature, is acute stroke. Advances 
in treatment have resulted in continually 

shifting guidelines, adding complexity to 
the time pressured decisions. 
With several key imaging features involved 
in stroke triage, it lends 
itself to the current focus on narrow 
AI solutions.

Intracranial Hemorrhage (ICH) detection
ICH is a medical emergency and timely 
diagnosis is critical as nearly half of 
resulting mortalities occur within the fi rst 
24 hours. The speed of interpretation is 
dependent on the priority assigned to 
the scan request, which is a particular risk 
when symptoms can be vague. Automated 
ICH detection, as implemented by Canon 
Medical Systems’ Stroke CT Package, can 
address this problem by automatically 

detecting ICH and pushing the results to 
the neurointerventionalist. A case example 
is shown in Figure 1.

Performance of this algorithm, assessed 
in a validation cohort of 200 ICH positive 
and 102 non-ICH patients, yielded the 
following results (Table 1): a sensitivity of 
0.93, specifi city of 0.93, Positive Predictive 
Value (PPV) of 0.85 and Negative Predictive 
Value (NPV) of 0.98. Of note, where the 
algorithm performance is challenged is in 
cases of small volume hemorrhages. The 
author notes that ensemble methods using 
multimodal data may be used to address 
this limitation in the future. 

Table 1. 95% Confidence Intervals for ICH volume, accuracy, sensitivity, specificity, positive predictive value, negative predictive value, F1 score, and Matthews correlation metrics corresponding to the ICH 
detection algorithm for all, small (≤5 mL), medium (>5 and <30 mL), and large (≥30 mL) ICHs. The percentage of times the algorithm correctly detects an ICH is also indicated.

All (n = 258) Small ICH (n = 93) Medium ICH (n = 117) Large ICH (n = 48)

ICH volume (mL) 17.2  ± 2.7 1.7 ± 0.3 13.2 ± 1.2 57.3 ± 6.1

Accuracy 0.94 ± 0.01 0.94 ± 0.02 0.93 ± 0.02 0.95 ± 0.02

Sensitivity 0.93 ± 0.03 0.89 ± 0.05 0.94 ± 0.04 0.99 ± 0.01

Specifi city 0.93 ± 0.01 0.94 ± 0.02 0.92 ± 0.02 0.92 ± 0.04

Positive predictive value 0.85 ± 0.02 0.81 ± 0.05 0.86 ± 0.03 0.91 ± 0.04

Negative predictive value  0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.01

F1 score 0.86 ± 0.03 0.81 ± 0.06 0.87 ± 0.04 0.94 ± 0.02

Matthews correlation coeffi  cient 0.87 ± 0.02 0.83 ± 0.04 0.87 ± 0.03 0.90 ± 0.04

Proper triage as ICH positive, % (n) 95 (245) 92.5 (86) 94.9 (111) 100.0 (48)

Healthcare Information Technology
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Reference
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Figure 1: Stroke CT Package was used to detect and segment 
the hemorrhage regions from the non contrast computed 
tomography (NCCT) image. The top left image shows an 
axial slice from the NCCT volume which is processed by the 
software. The boundary of the detected hemorrhagic region 
is shown in top right for the same axial slice*.  Automatic 
detection is performed throughout entire volume. Bottom left 
image shows the segmented hemorrhage in purple (using 
Vitrea Advanced Visualization), with a manually adjustable 
outline in red.  The bottom right image displays an volume 
view of the segmented hemorrhage (using Vitrea Advanced 
Visualization) along with the automated volume measure-
ment and mean Hounsfield unit (HU). 

* Not available in all geographies.

Table 1. Accuracy, sensitivity, specificity, positive predictive value, negative predictive value, F1 score and Matthews correlation metrics corresponding to the LVO detection algorithm for all and each 
occlusion site. 

All (n = 303) ICA (n = 160) MCA M1 (n = 183) MCA M2 (n = 162)

Accuracy 0.81 0.95 0.89 0.80

Sensitivity 0.73 0.90 0.77 0.51

Specifi city 0.98 0.98 0.98 0.98

Positive predictive value 0.99 0.96 0.97 0.94

Negative predictive value 0.64 0.94 0.84 0.77

F1 score 0.84 0.93 0.86 0.66

Matthews correlation coeffi  cient 0.67 0.89 0.78 0.59

Large Vessel Occlusion (LVO) detection
With the introduction of endovascular 
clot retrieval to routine clinical workfl ows, 
the identifi cation of those patients who 
would benefi t from the treatment quickly 
became top priority in stroke workfl ows. 
Implementing the automated detection 
of large vessel occlusions (LVO) in CTA, as 
provided by Canon Medical Systems’ Stroke 
CT Package, addresses this triage need. 

The performance of this LVO detection 
solution was assessed in a cohort of 202 
acute ischemic patients, 100 of whom had 
an occlusion within the Internal Carotid 
Artery (ICA), M1 or M2 regions of the Middle 
Cerebral Artery (MCA) and 102 patients with 
no occlusion. Analysis including all patients 

produced the following metrics (Table 1): a 
sensitivity of 0.73, specifi city of 0.98, PPV of 
0.99 and NPV of 0.64.  As with ICH detection, 
it seems size matters. As the occlusions 
become more distal, within the MCA M2 
region, they decrease in size and a drop 
off  in performance is seen, with sensitivity 
falling to 0.5. With any such automated 
detection task there is a trade off  in sensitiv-
ity versus specifi city, however in this clinical 
scenario this algorithm, for all vessel loca-
tions, may benefi t from further weighting to 
improve sensitivity. Figure 1 shows a clinical 
case example with detected LVO.

These triage applications of narrow AI 
have become a reality within acute stroke 
workfl ows and now the discussion of the 

eff ectiveness of these solutions is coming to 
the fore. It’s clear that further improvement 
is needed to address the challenges around 
the smaller, more subtle examples of pathol-
ogies, which will be tackled by additional 
training examples and techniques such as 
ensemble learning.

* Not available in all geographies.
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Figure 1: Correctly predicted large vessel occlusion (LVO) in 
case with right middle cerebral artery (MCA) occlusion. Top 
row shows coronal and axial views of the correctly labeled 
LVO, as indicated by the red box*.  Bottom row shows the 
same case with 2D MIP subtraction and 3D MIP subtraction 
(right) where you can visualize the lack of contrast distal to 
the occlusion. 
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